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Earth system models

Bonan & Doney, Science (2019)
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General circulation models

Navier-Stokes: Equations are “exact”, 
but cannot be solve analytically

Primitive equation models: 
- Numerical solutions on discrete grid
- General Circulation Models (GCMs)

Deterministic, but chaotic: 
- Perpetual novelty
- Infinite sensitivity to initial conditions

Scale interactions: energy cascade 
requires parameterization of subgrid-
scale effects



Courtesy of S. Bachman (NCAR)
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Long et al., JAMES (2021)

Representing ocean carbon biogeochemical dynamics

Model
(CESM 1°)

Observational
Estimate
(Landschützer et al.)

Biology sets upper ocean DIC budget 

Ecosystem function controls C export

There are no universally-accepted 
governing equations:
- Plankton function types
- Transfer functions

Explicit carbon chemistry

Models are built at the process-level; 
simulations show emergent features

Air-sea CO2 flux
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Data assimilation

Free-running models display systematic bias
DA can produce a model-data state 
estimate (“reanalysis”), reducing bias

DA provides model states that are maximally 
consistent with observations

DA can provide explicit uncertainty 
estimates and assessments of which 
observations are most important

Two approaches:
- Sequential ensemble DA (filter)
- Variational methods (smoother)

Lahoz & Schneider (2014)
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Ensemble sequential data assimilation

Challenges and shortcomings

Adding increments to the state can 
break the model physics

Two often-necessary tools: inflation 
and localization

Anderson, et al. (2007)Courtesy of D. Amrhein (NCAR)



Radiation

Air temperature

Wind stress

Freshwater fluxes 
(E-P-R)

Initial 
conditions 
T(0), S(0)

Parameterized
Physics

Atmospheric 
boundary 
conditions

Control
variables,

u

Variational methods solve an iterative optimization problem to 
minimize an objective function

Example: the
ECCO 

state estimate



Variational methods in practice: the ECCO state estimate

Inverse problem solved by ECCO
Solve for a set of 
- initial conditions,
- atmospheric boundary forcing,
- ocean mixing parameters,
to minimize residuals between the model solution 
and the observations in a least-squares sense.

Advantages
• Conserves ocean properties
• Uses information from past and future to 

constrain state (smoother rather than a filter)

Disadvantages
• Can generate spurious fluxes, e.g. in Lab. Sea
• No “errors of the day” 
• No uncertainty quantification
• Expensive to maintain adjoint

Sequential DA trajectory

ECCO trajectory

Courtesy of D. Amrhein (NCAR) & D. Menemenlis (JPL)
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Optimal observing system design

What is an optimal sampling strategy to best constrain 
a quantity of interest (i.e., “verification variable”)?

Lermusiaux, et al. (2017)
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MRV Challenges

Unfavorable signal-to-noise ratios
- Large background fields
- Dynamic variability

Establishing baseline counterfactual to assess 
additionality

Large spatiotemporal scales
- Slow CO2 equilibration timescale
- Large-scale overturning circulation

Model skill and parameter uncertainty

Unknown unknowns
- Ecosystem compensation
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Results from idealized experiments

Simulated alkalinity release (CESM 0.1°)



Particle dispersion modeling

Boyd  et al. (2022)

Lagrangian (i.e., flow-following) 
frameworks provide complementary 
information to GCMs

Particles can be advected in pre-
computed velocity fields

Quantify dispersion and trajectories

Possible to sample properties and 
compute transformations along 
particle paths



Lagrangian back-trajectories & footprints computed for aircraft samples

Morgan et al., JGR, (2019)



Frieder et al. (2022)

Global MacroAlgae Cultivation MODelling System (G-MACMODS)
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Courtesy of I. Arzeno (UCI)



Projecting potential macroalgae yields: uncertainty in parameters

n = 400 Monte Carlo runs for 
each seaweed group and 
each nutrient scenario 
(ambient and flux-limited)

Uncertainty analysis around biological 
parameters:

• Maximum uptake rate
• Half saturation constant
• Compensation irradiance
• Saturation irradiance
• Maximum growth rate
• Crowding
• Ratio of biomass to surface area
• Minimum nitrogen cell quota
• Max nitrogen cell quota
• Drag coefficient
• Nitrogen exudation rate
• Mortality rate

Courtesy of I. Arzeno (UCI) Arzeno et al. (in revision)



Separation of concerns: mapping re-emergence timescales

Fraction of carbon remaining sequestered after injection at depth

Siegel et al. (2022)
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Computation and data constraints

Computational constraints

Develop creative solutions
- E.g., geophysical modeling + machine learning 

Need hierarchy of modeling tools tailored 
to questions of interest
- Modeling systems built from interoperable 

components
- Enable bespoke sandboxes



Interoperability between modular components

Marine Biogeochemical Library (MARBL)
Modularity: facilitated by coupling 
infrastructure

Enable “mix-and-match” capabilities

Leverage interoperability to
- Isolate and study processes
- Explore structural uncertainty
- Leverage communities of practice



Computation and data constraints

Big Data 

Computation for analysis is a serious effort
- Collaborative development
- Data science/ML

Decision support “dashboards”

Computational Narratives: Platforms for 
community & policy engagement



Earth System Data Science

projectpythia.org

pangeo.io

leap.columbia.edu
ncar.github.io/esds
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Proposal

+

$10M $10M

Bespoke modeling applications Highly resolved observational deployments
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